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ABSTRACT: Using the pure spinor formalism, we compute the tree-level correlation func-
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the superfields in components, the respective terms of the effective action for the type I
supergravity are obtained. All terms found agree with the effective action known in the
literature. This result gives one more consistency test for the pure spinor formalism.
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1. Introduction

The covariant quantization of superstring theory has been an unresolved problem for a
long time. The covariant quantization, besides having manifest supersymmetry, makes the
computation of scattering amplitudes easier. This is important for understanding the low
energy limit of superstrings, through the construction of effective actions corresponding to
such amplitudes. In order to solve the problem of manifest covariant quantization, a new
formalism, known as pure spinors formalism, was proposed [[[]. This new formalism keeps
all the good properties of Ramond-Neveu-Schwarz and Green-Schwarz and does not have its
undesired characteristics. In the Ramond-Neveu-Schwarz formalism, when the number of
loops in computations of scattering amplitudes are increased, more and more spin structures
have to be considered which makes the computations very long. On the other hand, in the
Green-Schwarz formalism the quantization is only possible in the light-cone gauge and the
amplitude computations involve non-covariant operators at the interaction points.



The complete equivalence between the pure spinor formalism and other formalisms is
missing. Until this point is reached, the formalism needs to pass many consistency tests.
One of these tests consists of computing scattering amplitudes and comparing the results
with those coming from other formalisms. These tests have been carried out for amplitudes
involving closed superstrings at one loop [f] and two loops [J], among others. Interestingly,
amplitudes involving mixed superstrings have not been considered in the literature. One
important point is the fact that in pure spinor formalism the amplitudes have explicit super-
Poincaré symmetry, making the results automatically supersymmetric since the beginning.

From the viewpoint of field theory, the effective action for the type I supergravity
is obtained from the global super Yang-Mills action by imposing local supersymmetry,
which originates many compensation terms [}f] that are interpreted as interaction terms.
From the viewpoint of superstrings, all these interaction terms must come out naturally
from amplitude computations. The interaction terms of the type I supergravity effective
action have some interesting properties. A very peculiar one is the fact that there is a
coupling between the Kalb-Ramond and two photons. This term is needed to obtain local
supersymmetry. In order to keep gauge invariance, the Kalb-Ramond field must have a
unusual transformation under U(1) symmetry. This coupling will become very important
for the mixed anomaly cancelation in the SO(32) theory.

As pointed above, all these terms must come naturally from superstring theory. How-
ever, as they involve gravitational and Yang-Mills fields, amplitudes with open and closed
strings have to be considered. In this work, we will show that these terms can be obtained
from the pure spinor formalism. In string theory, the effective action can be obtained
considering the scattering amplitudes or correlation functions of three points given by

where the Vs above represent the physical states and are called vertex operators. For
the mixed scatterings, we must use the upper-half complex plane. The closed string is
represented by a point in the interior of the plane, while the open strings, by points in the
real axis. The number of conformal Killing vectors in this case is three, and the number of
moduli is zero. This makes it possible to fix the positions of the closed string and of one
of the open strings, obtaining

A= <V1V2/U3>-

In the last equation, V7 represents the fixed closed string, V5 represents the fixed open
string and Us, the integrated open string.

In the second section of this paper, we give the expression for the type I supergravity
effective action and its respective linearized action. This will be compared with the ex-
pression obtained from the pure spinor formalism. In the third section, the prescription for
amplitudes in pure spinor formalism will be briefly summarized, and an expression for the
computation of one closed and two open strings will be given. Using superspace identities,
a simple expression will be found following identical steps of [f]. This expression is given by

A= ggimicl (A% (M) + AL, (A4)] (A42) () ),



where the superfields in the closed string vertex operator V! have been written as the
product of two open string superfields.

It is important to note that this expression is manifestly super-Poincaré covariant and
that all the amplitudes involving one closed and two open massless strings are contained in
it. This shows one of the advantages of the pure spinor formalism. It will be also shown,
in appendix B, that this expression has all the gauge invariances.

In the fourth section, with this simple expression, the superfields will be expanded in
components, and explicit results will be given for all the correlation functions from which
the effective action can be obtained. All cases will be considered with some details, except
the case of one gravitino, one photon and one photino, which will be left for appendix D.

In appendix A, some useful identities will be given, and in appendix C, the correla-
tion function for graviton-photon-photon will be considered in the Ramond-Neveu-Schwarz
formalism for matter of comparison with pure spinor formalism.

2. Type I supergravity effective action

As said before, the Type I effective action can be obtained by imposing local supersymmetry
in the Super-Maxwell action and is given by [{]
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In order to go to the String Frame, we make the field redefinitions
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In the last equation, v is the gravitino, A is the dilatino, & is the photino and we use
the standard notation for the bosonic fields. The coupling between the Kalb-Ramond field
and the photon comes from H'™" which is defined as

H' = dB + 3AdA.

In the low energy limit, we need only the linearized Lagrangian. The usual procedure
is to make
Gmn — 7,]77’7,77/ + hmn'

In order to simplify some terms, we use the identities
,ym,yno _ ,yno,ym — _2Gmo,7n + 2Gmn70
and
’Ym’an’Ym - 6"an-

Regarding only the terms related to the two open and one closed string amplitudes,
we obtain

1 i 1
L= g ahn Fnol" = pFo — g g Hmnp A" E™
1 11
- 252 hmn§7m8n§ + @?gfymnprmnp (21)

1 1
—ﬁf%?ﬁmFmp - menp/\an-

The indices here are raised with 7. Attention is required in considering the dilaton
contribution coming from the expansion of the metric determinant, because

1
V=G =1+ 0,

and the trace of h,,, is related to the dilaton.

3. The tree-level correlation function for one closed and two open massless
strings in the pure spinor formalism

As discussed in the introduction, from the viewpoint of string theory, the graviton is
represented by a closed string and the photon by an open string. In pure spinor formalism,
the fixed operator for the open string is given by [fl]

V= g:)/\aAaa

where A is a pure spinor satisfying
AN = 0. (3.1)



The BRST operator is given by
Q = )\ada

with
a/

1 1
do = Epa - 597m8$m - g’ygbﬁ’yméneﬁeéaen-

The physical state condition gives us the equations of motion
DaAﬁ + DﬁAa = V?ﬁAm, (3.2)
where
o/ _ o - -
Da = Eaa + H’Ymam, Da = Eaa + vaﬁm

and A,, is a vector superfield. The integrated vertex operator for the open string is
1

where A, A, and d, are defined above and W< and F,,, are field strengths given by

1
W* = 10 'm DﬁA Fnn = 28[m14n}7
being N the Lorentz generators for the ghosts A, given by
O/ ()\,.Ymnw)
1 .

Nnm —

When necessary, the superfields will be expanded in components.The vertex operator
for the closed string is given by the product of two open string operators (A“A,) (S\O‘AQ).
Then, we have for the amplitude [l

A= (i [Un) = 2ot [ (3043 =) (0 2L (21)] (04° ) Un o)
= 29l [ dun([( AL () (2L (2)] (\A° 02) (3.3)
X <aeaA§ + ASTI™ + do WS + %N"mf3m> ).

A way to simplify an expression similar to this is given in ([ff]). We must show here
that the same expression is valid in the case of mixed string amplitudes following the same
steps. First of all we must note that the first term of the integrated operator has null OPE
with the other vertex operators. After this, we get

A= g2q. / dys([(A* AL (2)) (\*AL (2))] (AA% (92)) (3.4)

x (Af’nnm + d W3 + %N"mf3m> ).



We also have that the OPE of any vertex operator with A? (y2) will have null result
by fixing ys — oo . For the next term, we need the standard OPE

' 1 1 .
: Hm (yg) e'lk-x (Z) T~ ZkinOél |: —+ — :| e’lk“x (Z)

Z2—Ys Z—UY3

to obtain
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Now fixing
Im(z) =ia, Re(z)=0

the term in eq. (B.) is also null

i [y [ LT 00l 2) (5028 ()] (4 00) 45 =0

—ia —y3

where in the above expression a contour integral gives a null result. Them only the two
last terms contribute

=059, / dys< [(A*AL (2) (AAL (2)] (A4 (32)) <daW§‘+%N"mFSm>>.

For the next term, we must use the OPE

and we arrive in

Ay = g2 " / dys <Da (A (2)) (ml (2)) (1A2) W§“>

o C 2 z — y3
po [ dys /- 1 —1 N trra
iy | o (Da (M1 (2) (W' () (\22) W)

Fixing z = ia in the last equation and solving the integrals we get
Ar = +g2gmia’ (Do (VAY) (NA') (AA2) W5 ) + g2 gimic/ ((AA") Do (RA') (AA7) W)

After solving the OPEs, we just have zero modes and there is no difference between
holomorphic and antiholomorphic terms, i.e.,

A = +g2g mia/ < o (/\Al) </\/~11) (/\Az) 1%y >+gfgémoz <()\A1) D, ()\fll> ()\A2) Wg‘f‘> ,

where the symbol ~ above of A' is to emphasize that the momenta are equal but the
polarizations are different. Now, using the equations of motion (@)

Do (M) = — (Q) Aa + ()"Ym)a Am,



we obtain

A = +g;2ggma/<Da (A <>\fll) (AA2) Wa>+gg2g;ma <(>\A1)Da<)\f11) (AA2)W§‘>

= +oZgimial ([~ (Q) AL + (™), AL] (M) (Aa2) W)
oZgimial (A1) [~ (Q) AL + (™), A, | (A7) W)
Using the fact that an exact BRST term decouples, we obtain
Ar = +g2glmia <A1 (AA1> (AA2) (AfymW3)>
+9% gl mia! < )\Al )\A2 ()\ymW?’)>
—gfgémo/< < ) )\AQ) QW3 >
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and using
QW™ = £ (™) F

we arrive in
Ar = +ggimia’ (AL (AAY) (A42) (\W?) )
+gfg;ma’< (AAL) (A42) (/\7ng)>

/2 ! mia/

< (Ayrat) (AAT) (A42) F, )
92 g“j (At (nmmat) (%) 7, )
For the last term of the expression (B.4), we have

Ay = gid. / dy3< (AAY) (A4 (AAQ) Nm"F3 >

= a8l [ g s (O A) (A (W) )

/
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Y2 — ¥3)
where we have used the OPE

O/

N (g5) X% (2) = (e

(z —y3)
Fixing above yo = co and z = ia, we get
_ T mn A1\ (Y A1 2\ 13
Ay = g9 — n (M AY) (AAY) (MA%) FL)

20 T (A7) (AT (042) )

(3.6)

(3.7)



Adding the results (B.6) and (B.7), we finally obtain
A = g2gimia (An (\A') (AA2) (A" W) ) + g2glmia’ (A (AAY) (AA%) (A" W) )
= g2g.mia/ <[A}n </\/~11> + AL ()\Al)} (AA?) ()\ymW3)>. (3.8)

Although the starting expression (B-3J) has gauge invariance, we left the proof to ap-
pendix B. At this point, we must expand the superfields in components and use the measure

(A76) (M"8) (39°0) (B7aneb) = 1 (3.9)

in order to find the contribution of each component. The superfield expansion is given by

1 1 1
M = a5 (M76) = 5 (€9m0) (090) = 25 Frun (X30) (07""76)
1 mn;
+5g Mma (t9 70) (On&ypt) - -
Ap = am — (Eymb) — 2 (97m7 qe) Fpq + (H'Vm'Vp 0) (apf'qu) Ex (3.10)

1
MW = MS§—Z (AY*~™"0)F, mn+ ()\’y ’ym"H) mf’ynH—i— ()\’y Y"G) (O API0) Oy Frpg - - -

These expressions will be used in computations in the next section.

4. Correlation functions in components

4.1 One graviton/dilaton and two photons

As explained in the previous section, the vertex operator for closed strings can be written
as the product of the vertex operators of open strings. First of all, we need to identify
the NS-NS contribution in this product. From our final expression (B.§), the closed string
contribution is given by

45, (A1) + 43, (rah)].

Using the superfield expansion, we have the following result for the NS-NS contribution

1
hg1 - 187711 hh1n91t2 (e,ytz,ym1h19)> X

s 1. - .
<h91 - Zaml hh177g1t2 (9'7t2’7 1h19)> X

1z 1, -
<§hg2 (Ay?20) — Eamlhgzntlm (M'10) (97m192t20)>
+
1
< hgs (M?20) — Eamlhgzntlm (M"10) (97m192t29)>

Lo 70 5 1 .
= [2 (hglh h h > ()\’Yg29) - 1_6 (h 3m1hg2 + hglamlhgz) Miyty ()"Ytle) (e,yﬁugztge)

1 /- _
_g <h928m1 hhl + hg28m1 h‘hl) TNg1to (9,7t2,7m1h19) ()‘7g29)1| : (41)



We must be careful here to identify the NS-NS field, for when we write the closed
string as the product of two open strings, each part must carry half of the momentum.
For example

- - kL - kLo
<h918m1hgz + hg1am1hgz) = <i71hg1 hgz + iTlhgl hgz)

- %aml (Pafgs + Py ) -

From this, we can see that, like in Ramond-Neveu-Schwarz, only the symmetric part
of the NS-NS sector contributes. Its traceless part is identified with the graviton. We will
see later how the two form will come from the RR sector. Now, making the identification

hgl Bgz + Bgl hg2 = 2hg1g2
we obtain the graviton contribution
1 m
hglg2 ()"VgQH) - 1_667711 h929177t1t2 (>‘7t10) (07 1g2t20) (4-2)
1 ta . mihi g2
_gamlhhlgzngltz (6'7 Y 9) ()"7 6) :

After the identification of the NS-NS contribution, we must go back to the expres-
sion (B.§) and consider only the photon contribution from (B.10) to obtain

A= 9:)292772(1 <[h9192 (Ay920) — %ﬁamlhgzmntlh ()‘the) (97m1g2t29)
_%aml Phsgatignts (6727™140) (wze)}
X <%af2 <)\7f29> 12 37,2]"2 (Aypt) <97m2f2p9)>
y ( ( Mgl,ymaf39> oty @ (A1) (97 ’7"3f39> O n3f3>>

As we know from eq. (B.9), only terms with five thetas contribute to the amplitude.
Then, we have

A = G200 3,0, Fi gy (3570) (01726) (3720 (83,77570))
O g, i Fia (3077556) (068) (33,8) (87727270))
974, 120; (%O hasgn Py gt (M7177550) (30116) (X720 (67719229))
+9%4. GZ (af28m1hg19277t1t2 s f (A’ytlfym3f36) (Ay920) ()\’yfze) (6'24™1919)).

In order to solve the above expression, we need to use the identity (JA.4) and successive
times the identities (A.1]) and ([A.9) described in appendix A. Solving term by term with



the help of the GAMMA package we obtain

, 1 f 7
Al = mo‘/< ~ Trago™" 92" 0% Frg ~ 35g0 050 Ffm)
i/

— e a0 Fig, = 3840

f2 73
3840 hgl g2 692 a22 Ffzg1 .

In a similar way, we can obtain the second term

. .y
_ _mid fagr _ T 2 pof3g
As 2304h91 fang - 23040 giFfBLthF =

The third one is given by

. . /
_mid 2 3 T 3
A3 = — 7680 o pf201 F3 o+ 53010 om hz1 1Fg1m1
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= 7680 3m1 hf291 Fg1m1 _ 23040 hgi Mg 1Fglm1
i 3 mia! 3
= 7680 hfzg18m1af2 oimy T 16030 hg;F§1m1 B s

and the fourth is
1
2 m 3
Ay = —g5 927680a 0 1hf292F2m1

12 1 3
= 90 9cez0n 7680 hF2029m afz ngml

Adding all terms, we obtain

2 f: f:
-A g:) 927”04 <3840 hg1g2agz 2F1J”291 - 2304 91 fSHQF s
b phogm2 34 L phegme2 s )
7680 f2 glml 7680 f2" gama
mia fam
1520 0 f2m1F .
_ g/2g,7TZOé h9192F92f2F Ff391
o Yc 3340 2 f2g1 2304 91 f3!]2
_ 2 , mia! f f
= ~079 T3 T8 Pl ~ Tisg hgiFfmF o

In the gauge k™A, = 0, the relation hj; = 4® is valid [f], and we finally get

_omid g,
A= 20 gogc<

- @nﬁFhmlFﬁml) . (4.3)

Comparing this last expression with (R.1]), we see that up to a overall factor we have

the right result.

— 10 —



4.2 One graviton/dilaton and two photinos

From the pure spinor viewpoint, we need the graviton and the photino contribution to the
vertex operators which are respectively given by (£.9) and (B.I(). We then obtain

1 m
A = glglmia <|:hg1g2 (A\920) — 1_68m1h929177t1t2 ()\,Yﬁg) (97 1gzt29)
1 m
—g0mi P gagts (WZ’Y ”“9) (A’vgz@)}

‘ <_é (€200) O70) + o () (0779) (8852%9))

< (3076 41 00m10) 8,0 ). (1)
In the expression above, we have four terms with five thetas given by
A = 2g5°g.mia( 2—14hmg2 (Mm’ym‘“’fw) (M920) (Mf29> (071,€%) Oms&71,0) (4.5)
I/ (7%) (Os€11,6) (0 26) (X 6) (6777226
+2mid! <%8m1hglg2 (M%) (€96) () (M720) (B7™176)

50 (om€®) (€7,6) (026) (320 (677 ™1020)).

+2mic/ <

2micl (
Using now the identity

aeB 1 of [ ra 1 afB ( rabe 1 af ( rabede
&8 = 75 ()™ (1) + 55 (o)™ () + 525 Claveae)™ (F7%) . (46)

where
fa... — Sl,ya...§2
we have

a 1 oY 1 « abc 1 abcde
2 am3§§ - 16 (’Ya) b (flmg) 96 (’Yabc) g <f1717)13> 3840 (’Yabcde) (f bed ) .

Therefore the first term gives
1 m
Ar = g2 gi2mial (Shy, g, (M79™2520) (226) (3720
1 a 1 abc abcde
X <1_6 (9’7]”2’7&’7/‘3 9) (flmg) + % (97f2’7abc’7f39) < lmg) 3840 (97f2’7abcde’7f3 ) <f1m3 >>>

Using now the identities (A.5), (A.6), (A.7]) and successive times the identi-
ties (A1), (A.2) and (A.3), we obtain that only the first term contributes

. 1 1
A = ggl2mia ~T7280 g g2 &2791092¢% — 1390 hg, g> 627920 53]
2
= —9,29/ mio! §ay? 07 &3,

o Jdc 3456 9192

— 11 —



The next term in (L) is

o o 2micd

Az = g, QCW

(hgsge (V7€) (Oma€®110) (\720) (A1,0) (0972520 ).
Following the same steps described above, we obtain for the second term

2mia
2

Ay = —9:) 92 17280 9192537g 0792&s.
For the third term we get

o 2midd

Az =g 9. 9%

(Omihyigs (97€%) (€2926) (\p0) (M1720) (0™19270)),

which has null result. In fact, there is no way to contract a kinetic term for the graviton
with two photinos giving a non null result and

Az =0.
For the last term we have

As = 929210 (2O har g (Mim€?) (€27720) (220) (320) (07™™190)),

which is also null for the same reason as before. Finally, adding all terms we obtain

9 7T'0z

i/ 1
= 95 G <—§hg1g2§27g1092§3> :

A:

In this case the correlation of one dilaton and of two photinos gives a null result using
the photino’s equation of motion. The amplitude above is proportional to the respective
term in the effective action (R.1)), with the same overall factor of the eq. ([£.J).

4.3 One gravitino/dilatino, one photon and one photino

In the pure spinor computation, we need the gravitino contribution for the vertex operator.
This is given by

1Al _1 g1 c, i g1 Pq
ALAL = =Shoy (570), (E9m0) + 51 (1700 (07m77"6) (956740
1- 1
P (€:6) (70, + 75 (€3:6) (770),, (67770) O,

1 rs ~ 1 rs
15 0rhs (1) (677'0) (6%9) + oglm (n0), (047°'0) (9s&7:0) -

hy
Then we have

AL AL+ ALAL = —2 (96), [ (o + Fir€) ]

+21_4 (4919).. (0m?0) [(hglapé + ﬁglapf) Wqﬁ}

- 12 —



= [(m€ - Fun) 18] 76),
25 (@Rt + phed) 30 (170), (Brn716)
g (), (077°0) [(0:1.6 + 0,5€) ]
+% (1:0),, (67°6) [(ﬁmasg n hmé)Sé) %9} :
Using the identification
hon + om€ = 206m, (s € + gy 08 ) = Dy,

and being careful with the terms with derivatives, we obtain

i _ 1
MAVAL + AAVAL = — (M90) (g, vmb) + 51 A70) (09my"0) (9pthg 7a)

2 W) O070) + 5 b)) 0170 (47)

3
()"Yte) (97T8t9) (8rws'7m ) ()"Yre) (H’YTSte) (5m¢s%9) .

16 60

Now, we go back to the general expression (B.§) and consider the contribution of the
photon to one of the open strings and the photino to the other. We obtain

A = ¢2qg.mid <()\AAm + )\Aflm> ()\Az) ()\’ymW)> =
2

= sfgrial | = (176) (b 8) ~ 5 (028) (47°0)

1 1

+_()"Yg19)(6'7m7m1q9)(87711w917q6)+_

12(
L (010) (0473970) (Dt yunf) + = (\e8) (677916) <amwgme>}

60
1 1 1 ,
(B (920) 5 (€20) (v'0) = 22, 0) (077570) )

1 1
x <>\’ym§3 — 7 (Mm™520) B, 1, + 7 O0my"0) O €70

Omy 7/’91 VTH)()‘VTH)(H’Ym’legl 9)

16

3
+ 15 L (6) (97 ’ym3f39) o F, 3f3>>
There will be ten terms with five thetas and, as we have two fermions, we also need
to expand them using the identity (f.§) to obtain a total of thirty terms. The details are
described in appendix D, and the result is given by

-y
T
A= =93 oo (Fg, €7 9% + B g, €770™).

Again, we get that this is proportional to the respective term of the effective action (EI)
with the right overall factor. Note that, as in all other terms, this amplitude is symmetric
by the exchange of the two open strings. The dilatino-photino-photon correlation can be

— 13 -



found by this shortcut. We must take the photon contribution from the fixed operator and
the photino from the integrated one. Using the fact that the amplitude is symmetric by
this exchange, we obviously obtain the right result. We then have

mial |1
95)292 50 (4 g1f2§2fyglf2)‘)

which agree with the desired result.

4.4 Kalb-Ramond and two photons

In the type I superstring, the two form does not come from the NS-NS sector, as shown
before. In fact the two form comes from the RR sector and only appears as a field strength.
The RR contribution to the closed string vertex operator comes from

~ . 1 1
ML, 4 AB AL = (=3 €00) 0970) + 55 (4100), (09776) (0u30)

< (= (E00) + 15 O1r0) (0,620))
+ <—§ (é30) y70) + @ (Nmb) (67™76) (m@w))
< (= €t + 15 631™8) @,620) )

Making the identification
4¢P + €8P = 2F°P,

we have only one contribution given by
~ ~ 2
ML+ AATAL = =2 (0"0) (07m). F () 5. (4.8)

The other terms have five thetas and do not contribute to the amplitude. We have
then

2 n 8}
A= g2dimia’ (=3 0970 010, 7 (1,0)
1 2 1 2 m
X <§af2 ()\’yf29> ~ 550 mars (Ap0) (97 2f2p9)>
x (=3 (i) B3+ L (gmymang) (r,97020) 0 ). (4.9)
’Y ’Y 3f3 48 ’Y ’Y fy ’Y ms3 n3f3 .

We see that there is just one contribution given by

T 000) @) F2 (), (30726 (™276) ).
Using now the identity (f.(), the RR field can be expanded

L aB rrab L a8 pabed
e f = IVaﬁFa 96/72{bcHa ¢ M/ygbcdeFa .
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In the type I superstring the term that survives is the three-form, and we obtain

A = g2, T (B %, (y790) (3076) (31720 (0170036

In order to solve this term we must use the identities ([A.4), ([A.6) and successive applications
of the identities (A.1), (A.3) and (A.3). The result is
A =2 ymiad (1 g fafams
_go QCWO 8af2 mgfg )

and it is proportional to the expression (R.I), as desired. This term is very important
because it gives origin to a coupling which will cancel the mixed anomaly of SO(32) type
I superstring.

4.5 Kalb-Ramond and two photinos

The RR contribution to the closed string is given by ([.§), and we have the amplitude
2 1 2 n af
A = go gemia/ (| =5 (A"0) (07m) o I (100) 5

X <_% (27,0) (\"0) + @ (Mye0) (677°'0) (0562%9)>

m 1 m
X (M &+ 7 (y0) 5p£37q9>>-
The unique term which has five thetas in the last equation is the following

,2 g 2mia

9
s 2mia
= gO gC 9

A= (M™e%) (£2710) (M'0) (AY"0) (07) e FP (106) )

Habc((/\/ymés) (52%50) (/\’Vte) (/\'Vne) (9'7m7ab0/7n9)>'

We use here the identity (f.f) two times and the identities of the appendix A in order
to obtain

2 mia/ 2, abce3 12 ,7Ti0/ _i 2, abc¢3
A 90 9e 30560 Hopc&™y 6—9090—72()( 18 Hope§™y £>

and this is the right coupling, proportional to eq. (2.1).

5. Conclusions

In this work we have computed explicitly all correlation functions involving one closed and
two open strings in the pure spinor formalism. Comparing with the effective action for
the type I supergravity we came to the conclusion that the pure spinor formalism survives
one more consistency test and most of the couplings of the effective action were derived
here. The mixed string sector of pure spinor has not previously been considered in the
literature and there is a lot of research yet to be done. The problems considered here are

— 15—



just the beginning. Higher point amplitudes can be considered and loop corrections to type

I supergravity have not been computed from the pure spinor viewpoint.

As discussed in this paper, the pure spinor formalism gives the right coupling between

the Kalb-Ramond field and other gauge fields, a result of particular importance in the

mixed anomaly cancellation. At tree level, diagrams in which a two form is exchanged

between two gauge fields on one side and four on the other side have to be considered for

this cancellation. Therefore, a first step may be the computation of the tree-level five point

amplitudes involving a Kalb-Ramond field and four gauge bosons. This last idea is left

here for future investigations.
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A. Some important identities

During the computations made in this paper, we use extensively the following identities [[7]:

1
(A9°8) (X1°8) (\y°0) (B4est)) = —~33%5,
120
1

<()\7ab09) (Ava0) (Mve0) (0vfqn0)) = =

aocae 1 aocae 1 aocae
((A’Y bed 9) (M7£8) (Ag0) (0nij0)) = _Eéfghdij - Mgfl;hdij'

Any other term can be reduced to these above using the identities

[a b scl
0 [d"ellf 595h] )

abc ab,. c ac. b

yonbe = bl 4 pabae — pacab,

,Ya,yb,yc — nbc,ya o nac,yb + nab,yc + ,Yabcj

a, abc ad, ce b ac, de b ad, be_c ab__de_c

7 7d277777—77777—77777+77777

+nacnbe,yd o nabnce,yd + nde,yabc o Tlce,yabd + T,be,yacd
_nae,ybcd + nad,ybce _ nac,ybde + nab,ycde + ,yabcde

and

,Ya,yabcde,yf — nafneg,y _ T,aenfg,ybcd o T,af?,,dg,ybce + nadnfg,ybce
_‘_nae,’,}dg,ybcf _ nadneg,ybcf + naf,r}cg,ybde _ nacnfg,ybde
_naencg,ybdf + T,acneg,ybdf + nadncg,ybef _ nacndg,ybef

_nafnbg,ycde + nab,r}fg,ycde + nae,r}bg,ycdf _ nabneg,ycdf

_T,adnbg,ycef + T,abndg,ycef + nacnbg,ydef . T,abncg,ydef

_‘_nfg,yabcde _ neg,yabcdf + ndg,yabcef _ ncg,yabdef

bed

_‘_nbg,yacdef _ nag,ybcdef + naf,ybcdeg _ nae,ybcdfg
+nad,ybcefg o T,ac,ybdefg + T,ab,ycdefg + ,Yabcdefg’
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B. Gauge invariance
The expression (B.§) must be invariant under all gauge transformations. The first is given by
5 (AA%) = QA
and the variation of the first term in (B.§) is
O (A (M) @A) () )
= (@4}, (M)A w2))+ (AL (A A (W) - (Al (AA1> AQ( W)
= (W 48, (AAN)] (A ) AW ?)) = 2 (AL (A A((0™),(0") FL) )

1
4
= (W0 (AA1)] (AAT) A (™ W?)) i< b (M)A (™) (") FE))
(
(

= (9 (A1) (A1) A (0™1?) ) = k), (AaT) (AAT) A (A mw3)>
In the above expression, we have used the pure spinor condition (B.]]) and the Fierz identity

The variation of the second term is
052 /11 1 mirs3
=2 = (A, () (@A) (W) )
(@A, (AN A W)+ (ALQ(AANA (VW) — (AL, (A1) AQ(\ " W)

W+ 8 ()] (A1) A (A7) ) i (AL (A1) A (™A FL) )

<
(Do + 0 (AA1)] (A1) A (m102) ) = 1 (A3, (AA) A (7202
(0 (A1) (AAY) A (W) ) = ke, ( (AA) (AA) A (\" W) )

= ki, (A1) (A1) A (W) )

again we have used the pure spinor condition and the Fierz identity. Adding the results

we obtain
65 =051 +30Sy, =0.

The other gauge transformation is given by
) ()\Al) = QA,6AL =9, A

and we obtain
% = (O (A1) (A42) (W) ) = Kl (A (AAY) (A42) (A" 09) ).

For the second term
= (AL (QN) (A4?) (W)
=~ (QALAMAY) (VW) + (AL AQ(AAY) (M W) — (AL A (M) Q (" W)

0.5

T
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= — (MW" + 0 (A1) A (AA2) (0 W?) ) = 5 (AL (AA2) (9™ N " FEL) )
[

1
a 4
= = (W + 0 (M) A (A42) (W) ) — i (ALA (M%) (™2 FL) )
= — (O (M) A (A42) (W) ) = =kl ((AAT) A (A42) (W ?) )
and finally
55 = 651 + 85z = 0.

Using identical arguments as above we obtain the invariance under
SAA = QA.

Therefore, as expected, the final expression is in fact gauge invariant.

C. The one graviton two photons correlation function in Ramond-Neveu-
Schwarz formalism

In the Ramond-Neveu-Schwarz case two of the vertex operators must be in the picture —1
and one in the picture 0. Choosing the closed string in the picture 0, we obtain

—21 ol _ al - — i
0 _ !, o . m 1,0, . v 1,7p,7v\ Jikt-x .
V. e cchyu (zaX + 5 ko ) (z@X + ) kP ) e T(z) .

In this section, we follow the notation used in [[]. The fixed open string operator in the
-1 picture is given by
Vil =gl agah®ce?etFr T (yy) -,

and the integrated one is given by
V= igé/dys tagge e (y3) :
The expression for the amplitude is given by

o g_é 12—\ +oo .o . o ﬁ, 1,0, /1 AV Oé_/ 1.7p,7V iklx .
A= 22@/90 e / dys(: cchyy, <18X + 5 ko ) <28X + 5 kP )e (2):

— o0

© agah®cePeh2 T (1) agmbﬁe_d’eik:’"x(yg) ). (C.1)
The OPEs between the X* fields will be needed for all cases and it is given by

[e%
X (21) XV (22) 1= XV (21) XY (20) = S [m 21— 2o 4+ In |21 — 52|2] . (C2)

From the above expression all the related OPEs can be obtained

cOXH (zl)éX'/ (z2) := OXH (zl)éX'/ (z2) — a—/n’w%,
27 (&2—21)

DX P (20) X 3) = OX (20) XV () + o ———.
— <1

LIX M (21) XV () = OXP (21) XY (22) + a/n’“’y%.
— <1
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We also need of the OPE for the fields

(e (z1) e ?(22)) = 21_21’
(W (21) ¥ (22)) = 0" 215

After making all the possible contractions in the expression (@), we obtain

gle n _x [T ~ ik! ik ik: 1
A =2i"—g’e” / dyz(: cce™® T(2) i ce PR () 1 €3 (yg) )
al oo Y2 — Y3

B ; o p . .
n“ i/ tkg ot il il o,
X< — hy,a9,03 [4_ kF 4+ iy i C3
{ ey ) e —2 2 ys—z| ez 2 gz (©3)
i [ﬂku . il ku} [k‘laﬁwﬁaﬁazaagg B k1a77”577"°‘a2aa35]
v —k3 —k3

+—h

2 Yo —Z Y3 —Z (z—w2)(z—w3) (2—u2)(z—y3)
—i—@h [+ iad . z'k‘god] |:k71p’l’}'/a’l’}pﬁagaa35 B k‘lpn”ﬁnpo‘agaagg} }
2 M =2 ys—z] [E—y)(Z—ys)  (Z—w2)(Z—y3)

The ghost contribution to the amplitude is given by
(@(2)elz2) = O, Iy — 22 (== 2)..

In the last equation, C%Z is a constant coming from functional determinants. The contri-
bution from the exponentials is given by

<: eik'x(z) 5 eik'x(yg) : eik'x(yg) :>
_ ZCgQ (27T)d5(2k) |Z o 2|0¢//€%/2 |y2 o y3|2a/k2'k3 |y2 o Z|2a/k1-k2 |y3 o z|2a/k1'k3

again, Ci)g is a constant coming from functional determinants. Using momentum conser-

vation we obtain
k2 =Fky ko =k -ky=1Fkg-ky =0,

then
<: ek T(2) 11 P T (y5) 1 €T (yg) ;> = iC, (2m)5(Sk),

and we obtain for (C.J)

/ —+o0 1
A = 2% 2 m) 500,08, [ din—— 2~ 2 (- =) (2m)5(2H)
ol —00 Y2 — Y3
Oéﬁ . N . .
n o iks a/] [ ial i V]
X< — hyaoaa + kY + — k5 + —k
{ S 35(@/2-1/3)[ Yo—2 2 ys—z||lyp—2 > y3—%°

/

e o, o, klan“anc’ﬁagaagg klan“ﬁnmagaagg
ny —_k2+ _k’g —

+oh

2 Yo —Z Y3 —Z (z—w2)(z—w3) (2—u2)(z—y3)
+@h [+ iol K z'k‘g‘od] |:/€1p?’]l/a?’]p6a2aa3g B klpn’jﬁnpaagaagg} }
2 M =2 =2 [(Z—y)(Z—y3)  (Z—w2) (Z—ys)

The contribution of the functional determinants can be found in [f] and it is given by

— 1 29 g
A g X /o c. 1 _ o
€ CDQ CDQ /gg ) gc / ' Jo 2 7 .
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As in the pure spinor case, we fix
y2 = 0;Re(z) = 0;Im(z) = a

to obtain

—i oo 1
A:—g%dadzka/ dyy—————
e (2m)“6% (k) - ys,|y3 P
x {[az - kiahy, (ahk3s + askhy) — a - kizhy, (a5kys + agkby) + 2k, kyskhzas - as]} .

From the above expression, we can already see that the antisymmetric part of h,,
does not contribute for this amplitude. In fact in the type I superstring, the Kalb-Ramond
contribution comes from the RR sector and not from NS-NS. Finally, integrating we obtain

g
A= ﬂgc(zw)d(sd(zk) [ag - kiahy,al ks — ag - kizhy,ab ks + hyy kyskhsas - as) .
The last expression can be written in the position space
i
A= g9 Fa ()

This amplitude originates a term in the effective action that is proportional to (R.1)
and to the pure spino result ([[.3),as desired. Obviously it has all the desired properties as
gauge invariance and symmetry in the exchange of the two photons.

D. One gravitino one photon one photino

As said in the text, the final expression is given by

o ) :

A= =T 970) (o) + 5 (ne0) (N70) | aF, (39720) (y™2%6) Dy €3:0)
.0 5 :

— T 976) (36 + 5 (V0) (0970) | (€238) (\10) (Myy™6) Fi )
- 5 :

+ 5| (A710) (1) + 5 (V3,8) (N76) | B2, 1, (W) (69727270 (Myn®))

[ m

e (| 15 (90) (03m1™19) (Omny 6, 746) a3, (A1) (M)

1

2% (aM1wg17T9) ()"YTH) (H’Ym’}’mlgle) aifz <)‘7f26) ()"meg)
1

+ 55 (V16) (69™96) Oy v 1) a, (M1726) (M)

1
+m (Ayr0) (H’YTgltH) (amlbgl%@) a% ()\,yfze) ()\meg) :|>

_l’_

the terms with five 0’s are given by

mic/ 2 m3s g1 f2 r 3
A = 52503, (ry™20) (V9 0) (3720 (677 4,) Oy €7.6)
mia

+ T ad, (9 y™9%0) (\76) (X720 (09,65,) Oy €40
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T P (27 0) (3970) (3'6) (07 ) (€23:0))
i Fo iy ((2797350) (376) (3'0) (005, (€26)
i Finy 1o (M%) (,778) (M7 8) (My8) (97m2f2p9>>
ma E2 1 (M71€%) (1hg, 18) (M70) (A7p0) (97m2f2p9>>

7TZCY

+Eaf2<()‘7p§ ) (Omig1749) (AY710) ()\fnyQ) (0~P~™199))

24 af2 (/\%5 ) Oy g, 700) (AY70) </\7f29> (0~y°y™1916))
) mlwgl’}/ )()\%9) ()\,},fz@) (97m191t9)>

(A
( mlf ) m17p917t9) (A,-0) </\’7f29> (07r91t0)>

7TZa
32 afz
7TZOZ
150 T30 %

all the terms above are quite similar to the one graviton and two photinos computation.
Following the same steps and using the fact that the gravitino is gamma traceless exten-
sively we obtain

af21/1917f291m38 §3>

; 1
A, = mid ( 5 f2¢g17f2891§3 -

384

Using now the identity (AZH), we obtain

(1 1
Ay = mid <3840 f2¢g17f2 D9Ey + o afglbgﬁh@glﬁg,)

3mia/
7680 2

1/191 ,-Yfz 891 53 .

Using the same argument for the other ten terms, we obtain

/

Ay = S g g 006,

A= md( 57160 Fna 0" 160+ 57160 Fona 1196 % 57160 m3f3¢917f3g1m352>
= i Pt

Ax = g PG B
e

As = mie! (ST Pl S0 = s PR €0 — e P 6,
= i (g a0~ g €™ ) = S P
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. 1 1 1
Ag = mia/ <17280 m2f2§3 Faqpma 350 mzfgfg magfe 4 mzfgfg fzg1m21/} >

17280
o 3. f2,,m 3. f2,,m _ mia/ 3., f2,,m
- (8640 Finass€ 10" + gagg Fnan€ 10 2) 1320 s E VO
1
A7 = 7TZO[/ (34560 m1£ gl 1’1/)91 138240 2 g /nyQImla 1¢g1>
= 0,
_ 7Ti04 3 fagimi _
As 17280 ahE O Vg =0,
o 7I"LOé 2 ¢3 m _
Ag = = @h, 7PN O g, = 0
and
Ao = mie! <144o R0 wgl) -

We can note that the last four terms give null results because, as in the graviton case,
there is no way to contract a kinetic term of the gravitino with a photon and a photino
that gives a non null result. Adding all results, we obtain

, 3 1,
A= ma/( - 7680 Fgu ™6~ 2160 Fouptn ™G

1 1
~ 1410 E3 ™y f3§2——1440 sy,

7 m 3 1 m 3
23040 Epo ™76 = 4320 Ep ¥ fzf)
micd

= - 720 ( g1f2¢gl f2£3 + 3f3¢m3 f3£2)
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