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Geová Alencar
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1. Introduction

The covariant quantization of superstring theory has been an unresolved problem for a

long time. The covariant quantization, besides having manifest supersymmetry, makes the

computation of scattering amplitudes easier. This is important for understanding the low

energy limit of superstrings, through the construction of effective actions corresponding to

such amplitudes. In order to solve the problem of manifest covariant quantization, a new

formalism, known as pure spinors formalism, was proposed [1]. This new formalism keeps

all the good properties of Ramond-Neveu-Schwarz and Green-Schwarz and does not have its

undesired characteristics. In the Ramond-Neveu-Schwarz formalism, when the number of

loops in computations of scattering amplitudes are increased, more and more spin structures

have to be considered which makes the computations very long. On the other hand, in the

Green-Schwarz formalism the quantization is only possible in the light-cone gauge and the

amplitude computations involve non-covariant operators at the interaction points.
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The complete equivalence between the pure spinor formalism and other formalisms is

missing. Until this point is reached, the formalism needs to pass many consistency tests.

One of these tests consists of computing scattering amplitudes and comparing the results

with those coming from other formalisms. These tests have been carried out for amplitudes

involving closed superstrings at one loop [2] and two loops [3], among others. Interestingly,

amplitudes involving mixed superstrings have not been considered in the literature. One

important point is the fact that in pure spinor formalism the amplitudes have explicit super-

Poincaré symmetry, making the results automatically supersymmetric since the beginning.

From the viewpoint of field theory, the effective action for the type I supergravity

is obtained from the global super Yang-Mills action by imposing local supersymmetry,

which originates many compensation terms [4] that are interpreted as interaction terms.

From the viewpoint of superstrings, all these interaction terms must come out naturally

from amplitude computations. The interaction terms of the type I supergravity effective

action have some interesting properties. A very peculiar one is the fact that there is a

coupling between the Kalb-Ramond and two photons. This term is needed to obtain local

supersymmetry. In order to keep gauge invariance, the Kalb-Ramond field must have a

unusual transformation under U(1) symmetry. This coupling will become very important

for the mixed anomaly cancelation in the SO(32) theory.

As pointed above, all these terms must come naturally from superstring theory. How-

ever, as they involve gravitational and Yang-Mills fields, amplitudes with open and closed

strings have to be considered. In this work, we will show that these terms can be obtained

from the pure spinor formalism. In string theory, the effective action can be obtained

considering the scattering amplitudes or correlation functions of three points given by

A = 〈V1V2V3〉,

where the Vs above represent the physical states and are called vertex operators. For

the mixed scatterings, we must use the upper-half complex plane. The closed string is

represented by a point in the interior of the plane, while the open strings, by points in the

real axis. The number of conformal Killing vectors in this case is three, and the number of

moduli is zero. This makes it possible to fix the positions of the closed string and of one

of the open strings, obtaining

A = 〈V1V2

∫
U3〉.

In the last equation, V1 represents the fixed closed string, V2 represents the fixed open

string and U3, the integrated open string.

In the second section of this paper, we give the expression for the type I supergravity

effective action and its respective linearized action. This will be compared with the ex-

pression obtained from the pure spinor formalism. In the third section, the prescription for

amplitudes in pure spinor formalism will be briefly summarized, and an expression for the

computation of one closed and two open strings will be given. Using superspace identities,

a simple expression will be found following identical steps of [5]. This expression is given by

A = g′2o g
′
cπiα

′
〈[
A1

m

(
λÃ1

)
+ Ã1

m

(
λA1

)] (
λA2

) (
λγmW 3

)〉
,
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where the superfields in the closed string vertex operator V 1 have been written as the

product of two open string superfields.

It is important to note that this expression is manifestly super-Poincaré covariant and

that all the amplitudes involving one closed and two open massless strings are contained in

it. This shows one of the advantages of the pure spinor formalism. It will be also shown,

in appendix B, that this expression has all the gauge invariances.

In the fourth section, with this simple expression, the superfields will be expanded in

components, and explicit results will be given for all the correlation functions from which

the effective action can be obtained. All cases will be considered with some details, except

the case of one gravitino, one photon and one photino, which will be left for appendix D.

In appendix A, some useful identities will be given, and in appendix C, the correla-

tion function for graviton-photon-photon will be considered in the Ramond-Neveu-Schwarz

formalism for matter of comparison with pure spinor formalism.

2. Type I supergravity effective action

As said before, the Type I effective action can be obtained by imposing local supersymmetry

in the Super-Maxwell action and is given by [4]

1√
−G

L = − 1

2κ′
R̃− 9

16κ′2

(
∂mφ

φ

)2

− 1

4
φ−3/4 (Fmn)2 − 3

4
φ−3/2H2

mnp

−1

2
ψmγ

mnpDnψp −
1

2
λγmDmλ− 1

2
χγmDmχ

−1

4
κ′φ−3/8χγmγnpFnp

(
ψm +

√
2

12
γmλ

)

+

√
2

16
κ′φ−3/4χγmnpχHmnp −

3
√

2

8
ψmγ

nγmλ

(
∂nφ

φ

)

+

√
2κ′

16
φ−3/4Hnpq(ψmγ

mnpqrψr + 6ψnγpψq

−
√

2ψmγ
npqγmλ) + (Fermi)4 .

In order to go to the String Frame, we make the field redefinitions

G̃mn = e2ωGmn, φ = e8ω/3, ψm =
1

κ′
eω/2ψ′

m, χ =
1

g′
e−5ω/2ξ

λ =
1

κ′
e−ω/2λ′, Am =

1

g′
A′

m, Bmn =
κ′

3
√

2g′2
B′

mn, η = eω/2η′,

where ω = (Φ0 − Φ)/4. We obtain the following Lagrangian

L =

√
−G

2κ2
e−2Φ [R+ 4∂mΦ∂mΦ] −

√
−G

4κ2
e−ΦF 2

mo −
1

24κ2

√
−GH ′2

mnp

− 1

2κ2

√
−Ge−2Φψmγ

mnpDnψp −
1

κ2

√
−Ge−2ΦλγmDmλ

− 1

2κ2

√
−Ge−ΦξγmDmξ −

1

4κ2

√
−Ge−ΦξγmγnpFnp

(
ψm +

1

6
γmλ

)

– 3 –
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+
1

48

1

κ2

√
−GξγmnpξH ′

mnp −
2

κ2

√
−Ge−2Φψmγ

nγmλ∂nΦ

+
3

8κ2

√
−Ge−ΦH ′

npq(ψmγ
mnpqrψr + 6ψnγpψq − 2ψmγ

npqγmλ).

In the last equation, ψ is the gravitino, λ is the dilatino, ξ is the photino and we use

the standard notation for the bosonic fields. The coupling between the Kalb-Ramond field

and the photon comes from H ′mnp, which is defined as

H ′ = dB + 3AdA.

In the low energy limit, we need only the linearized Lagrangian. The usual procedure

is to make

Gmn = ηmn + hmn.

In order to simplify some terms, we use the identities

γmγno − γnoγm = −2Gmoγn + 2Gmnγo

and

γmγnpγm = 6γnp.

Regarding only the terms related to the two open and one closed string amplitudes,

we obtain

L = − 1

2κ2
hm

n FmoF
no − Φ

4κ2
F 2

mo −
1

8κ2
HmnpA

mFnp

− 1

2κ2
hmnξγ

m∂nξ +
1

48

1

κ2
ξγmnpξHmnp (2.1)

− 1

κ2
ξγpψmF

mp − 1

4κ2
ξγnpλFnp.

The indices here are raised with η. Attention is required in considering the dilaton

contribution coming from the expansion of the metric determinant, because

√
−G = 1 +

1

2
hm

m

and the trace of hmn is related to the dilaton.

3. The tree-level correlation function for one closed and two open massless

strings in the pure spinor formalism

As discussed in the introduction, from the viewpoint of string theory, the graviton is

represented by a closed string and the photon by an open string. In pure spinor formalism,

the fixed operator for the open string is given by [1]

V = g′oλ
αAα,

where λ is a pure spinor satisfying

λγmλ = 0. (3.1)

– 4 –
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The BRST operator is given by

Q = λαdα

with

dα =
α′

2
pα − 1

2
θγm∂xm − 1

8
γm

αβγmδηθ
βθδ∂θη.

The physical state condition gives us the equations of motion

DαAβ +DβAα = γm
αβAm, (3.2)

where

Dα =
α′

2
∂α + θγm∂m, D̄α =

α′

2
∂̄α + θ̄γm∂m

and Am is a vector superfield. The integrated vertex operator for the open string is

g′o

∫
dy3

(
∂θαAα +AmΠm + dαW

α +
1

2
NnmFnm

)
,

where Aα, Am and dα are defined above and Wα and Fmn are field strengths given by

Wα =
1

10
γαβ

m DβA
m, Fmn = 2∂[mAn],

being Nmn the Lorentz generators for the ghosts λ, given by

Nnm =
α′ (λγmnω)

4
.

When necessary, the superfields will be expanded in components.The vertex operator

for the closed string is given by the product of two open string operators (λαAα)
(
λ̄αĀα

)
.

Then, we have for the amplitude [1]

A =

〈
VgVh

∫
Uh

〉
= g′2o g

′
c

∫
dy3

〈[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)
Uh (y3)

〉

= g′2o g
′
c

∫
dy3〈

[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)

(3.3)

×
(
∂θαA3

α +A3
mΠm + dαW

α
3 +

1

2
NnmF3

nm

)
〉.

A way to simplify an expression similar to this is given in ([5]). We must show here

that the same expression is valid in the case of mixed string amplitudes following the same

steps. First of all we must note that the first term of the integrated operator has null OPE

with the other vertex operators. After this, we get

A = g′2o g
′
c

∫
dy3〈

[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)

(3.4)

×
(
A3

mΠm + dαW
α
3 +

1

2
NnmF3

nm

)
〉.

– 5 –
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We also have that the OPE of any vertex operator with A2 (y2) will have null result

by fixing y2 ⇀∞ . For the next term, we need the standard OPE

: Πm (y3) e
ik·x (z) :∼ ikm

1 α′
[

1

z − y3
+

1

z̄ − y3

]
eik·x (z)

to obtain

iα′

∫
dy3k

m
1 α′

[
1

z − y3
+

1

z̄ − y3

] 〈[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)
A3

m

〉
. (3.5)

Now fixing

Im(z) = ia, Re(z) = 0

the term in eq. (3.5) is also null

iα′

∫
dy3k

m
1 α′

[
1

ia− y3
+

1

−ia− y3

] 〈[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)
A3

m

〉
= 0,

where in the above expression a contour integral gives a null result. Them only the two

last terms contribute

A = g′2o g
′
c

∫
dy3

〈[(
λαA1

α (z)
) (
λ̄αĀ1

α (z̄)
)] (

λA2 (y2)
)(

dαW
α
3 +

1

2
NnmF3

nm

)〉
.

For the next term, we must use the OPE

dα (zi)V (zj) ∼ −α
′

2

DαV

zj − zi
− α′

2

D̄αV

z̄j − zi

and we arrive in

A1 = g′2o g
′
c

α′

2

∫
dy3

z − y3

〈
Dα

(
λA1 (z)

)(
λA

1
(z̄)
) (
λA2

)
Wα

3

〉

−g′2o g′c
α′

2

∫
dy3

z̄ − y3

〈
D̄α

(
λA1 (z)

) (
λA

1
(z̄)
) (
λA2

)
Wα

3

〉
.

Fixing z = ia in the last equation and solving the integrals we get

A1 = +g′2o g
′
cπiα

′
〈
Dα

(
λA1

) (
λA

1
) (
λA2

)
Wα

3

〉
+g′2o g

′
cπiα

′
〈(
λA1

)
D̄α

(
λA

1
) (
λA2

)
Wα

3

〉
.

After solving the OPEs, we just have zero modes and there is no difference between

holomorphic and antiholomorphic terms, i.e.,

A1 = +g′2o g
′
cπiα

′
〈
Dα

(
λA1

) (
λÃ1

) (
λA2

)
Wα

3

〉
+g′2o g

′
cπiα

′
〈(
λA1

)
Dα

(
λÃ1

) (
λA2

)
Wα

3

〉
,

where the symbol ∼ above of A1 is to emphasize that the momenta are equal but the

polarizations are different. Now, using the equations of motion (3.2)

Dα (λA) = − (Q)Aα + (λγm)αAm,

– 6 –
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we obtain

A1 = +g′2o g
′
cπiα

′
〈
Dα

(
λA1

)(
λÃ1

)(
λA2

)
Wα
〉

+g′2o g
′
cπiα

′
〈(
λA1

)
Dα

(
λÃ1

)(
λA2

)
Wα

3

〉

= +g′2o g
′
cπiα

′
〈[

− (Q)A1
α + (λγm)αA

1
m

] (
λÃ1

) (
λA2

)
Wα

3

〉

+g′2o g
′
cπiα

′
〈(
λA1

) [
− (Q) Ã1

α + (λγm)α Ã
1
m

] (
λA2

)
Wα

3

〉
.

Using the fact that an exact BRST term decouples, we obtain

A1 = +g′2o g
′
cπiα

′
〈
A1

m

(
λÃ1

) (
λA2

) (
λγmW 3

)〉

+g′2o g
′
cπiα

′
〈
Ã1

m

(
λA1

) (
λA2

) (
λγmW 3

)〉

−g′2o g′cπiα′
〈
A1

α

(
λÃ1

) (
λA2

)
QWα

3

〉

+g′2o g
′
cπiα

′
〈(
λA1

)
Ã1

α

(
λA2

)
QWα

3

〉
,

and using

QWα =
1

4
(λγmn)α Fmn

we arrive in

A1 = +g′2o g
′
cπiα

′
〈
A1

m

(
λÃ1

) (
λA2

) (
λγmW 3

)〉

+g′2o g
′
cπiα

′
〈
Ã1

m

(
λA1

) (
λA2

) (
λγmW 3

)〉

−g′2o g′c
πiα′

4

〈(
λγmnA1

) (
λÃ1

) (
λA2

)
F3

mn

〉

+g′2o g
′
c

πiα′

4

〈(
λA1

) (
λγmnÃ1

) (
λA2

)
F3

mn

〉
.

For the last term of the expression (3.4), we have

A2 = g′2o g
′
c

∫
dy3

〈(
λA1

) (
λ̄Ā1

) (
λA2

) 1

2
NmnF 3

mn

〉
(3.6)

= g′2o g
′
c

∫
dy3

α′

8 (z − y3)

〈(
λγmnA1

) (
λ̄Ā1

) (
λA2

)
F 3

mn

〉

+g′2o g
′
c

∫
dy3

α′

8 (z̄ − y3)

〈(
λA1

) (
λ̄γmnĀ1

) (
λA2

)
F 3

mn

〉

+g′2o g
′
c

∫
dy3

α′

8 (y2 − y3)

〈(
λA1

) (
λ̄Ā1

) (
λγmnA2

)
F 3

mn

〉
,

where we have used the OPE

Nmn (y3)λ
α (z) =

α′

4 (z − y3)
(λγmn)α .

Fixing above y2 = ∞ and z = ia, we get

A2 = g′2o g
′
c

πiα′

4

〈(
λγmnA1

) (
λ̄Ā1

) (
λA2

)
F 3

mn

〉
(3.7)

−g′2o g′c
πiα′

4

〈(
λA1

) (
λ̄γmnĀ1

) (
λA2

)
F 3

mn

〉
.

– 7 –
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Adding the results (3.6) and (3.7), we finally obtain

A = g′2o g
′
cπiα

′
〈
Am

(
λÃ1

) (
λA2

) (
λγmW 3

)〉
+ g′2o g

′
cπiα

′
〈
Ãm

(
λA1

) (
λA2

) (
λγmW 3

)〉

= g′2o g
′
cπiα

′
〈[
A1

m

(
λÃ1

)
+ Ã1

m

(
λA1

)] (
λA2

) (
λγmW 3

)〉
. (3.8)

Although the starting expression (3.3) has gauge invariance, we left the proof to ap-

pendix B. At this point, we must expand the superfields in components and use the measure

〈(λγaθ)
(
λγbθ

)
(λγcθ) (θγabcθ) = 1 (3.9)

in order to find the contribution of each component. The superfield expansion is given by

λA =
1

2
af

(
λγfθ

)
− 1

3
(ξγmθ) (λγmθ) − 1

32
Fmn (λγpθ) (θγmnpθ)

+
1

60
(λγmθ)α (θγmnpθ) (∂nξγpθ) . . .

Am = am − (ξγmθ)−
1

8
(θγmγ

pqθ)Fpq +
1

12
(θγmγ

pqθ) (∂pξγqθ) . . . (3.10)

λγsW = λγsξ− 1

4
(λγsγmnθ)Fmn+

1

4
(λγsγmnθ) ∂mξγnθ+

1

48
(λγsγmnθ)(θγnγ

pqθ) ∂mFpq . . .

These expressions will be used in computations in the next section.

4. Correlation functions in components

4.1 One graviton/dilaton and two photons

As explained in the previous section, the vertex operator for closed strings can be written

as the product of the vertex operators of open strings. First of all, we need to identify

the NS-NS contribution in this product. From our final expression (3.8), the closed string

contribution is given by [
A1

m

(
λÃ1

)
+ Ã1

m

(
λA1

)]
.

Using the superfield expansion, we have the following result for the NS-NS contribution

(
hg1

− 1

4
∂m1

hh1
ηg1t2

(
θγt2γm1h1θ

))
×

(
1

2
h̃g2

(λγg2θ) − 1

16
∂m1

h̃g2
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

))

+

(
h̃g1

− 1

4
∂m1

h̃h1
ηg1t2

(
θγt2γm1h1θ

))
×

(
1

2
hg2

(λγg2θ) − 1

16
∂m1

hg2
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

))

=

[
1

2

(
hg1

h̃g2
+ h̃g1

hg2

)
(λγg2θ) − 1

16

(
hg1

∂m1
h̃g2

+ h̃g1
∂m1

hg2

)
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

)

−1

8

(
h̃g2

∂m1
hh1

+ hg2
∂m1

h̃h1

)
ηg1t2

(
θγt2γm1h1θ

)
(λγg2θ)

]
. (4.1)

– 8 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
5

We must be careful here to identify the NS-NS field, for when we write the closed

string as the product of two open strings, each part must carry half of the momentum.

For example

(
hg1

∂m1
h̃g2

+ h̃g1
∂m1

hg2

)
=

(
i
k1

m1

2
hg1

h̃g2
+ i

k1
m1

2
h̃g1

hg2

)

=
1

2
∂m1

(
hg1

h̃g2
+ h̃g1

hg2

)
.

From this, we can see that, like in Ramond-Neveu-Schwarz, only the symmetric part

of the NS-NS sector contributes. Its traceless part is identified with the graviton. We will

see later how the two form will come from the RR sector. Now, making the identification

hg1
h̃g2

+ h̃g1
hg2

= 2hg1g2

we obtain the graviton contribution

[
hg1g2

(λγg2θ)− 1

16
∂m1

hg2g1
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

)
(4.2)

−1

8
∂m1

hh1g2
ηg1t2

(
θγt2γm1h1θ

)
(λγg2θ)

]
.

After the identification of the NS-NS contribution, we must go back to the expres-

sion (3.8) and consider only the photon contribution from (3.10) to obtain

A = g′2o g
′
cπiα

′〈
[
hg1g2

(λγg2θ) − 1

16
∂m1

hg2g1
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

)

−1

8
∂m1

hh1g2
ηg1t2

(
θγt2γm1h1θ

)
(λγg2θ)

]

×
(

1

2
a2

f2

(
λγf2θ

)
− 1

32
F 2

m2f2
(λγpθ)

(
θγm2f2pθ

))

×
(
−1

4

(
λγg1γm3f3θ

)
F 3

m3f3
+

1

48
(λγg1γm3nθ)

(
θγnγ

n3f3θ
)
∂m3

F 3
n3f3

)
〉.

As we know from eq. (3.9), only terms with five thetas contribute to the amplitude.

Then, we have

A = g′2o g
′
c

πiα′

96
〈hg1g2

a2
f2
∂m3

F 3
n3f3

(λγg1γm3nθ) (λγg2θ)
(
λγf2θ

)(
θγnγ

n3f3θ
)
〉

+g′2o g
′
c

πiα′

128
〈hg1g2

F 2
m2f2

F 3
m3f3

(
λγg1γm3f3θ

)
(λγg2θ) (λγpθ)

(
θγm2f2pθ

)
〉

+g′2o g
′
c

πiα′

128
〈a2

f2
∂m1

h̃g2g1
F 3

m3f3
ηt1t2

(
λγg1γm3f3θ

)(
λγt1θ

)(
λγf2θ

) (
θγm1g2t2θ

)
〉

+g′2o g
′
c

πiα′

64
〈a2

f2
∂m1

hg1g2
ηt1t2F

3
m3f3

(
λγt1γm3f3θ

)
(λγg2θ)

(
λγf2θ

)(
θγt2γm1g1θ

)
〉.

In order to solve the above expression, we need to use the identity (A.4) and successive

times the identities (A.1) and (A.2) described in appendix A. Solving term by term with
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the help of the GAMMA package [8] we obtain

A1 = πiα′

(
− 1

17280
hg1g2af2

2 ∂
g2F 3

f2g1
− 7

34560
hg1g2

a2
f2
∂g1F 3

f2g2

)

= − πiα′

3840
hg1g2af2

2 ∂
g2F 3

f2g1
=
πiα′

3840
hg1g2∂g2af2

2 F
3
f2g1

.

In a similar way, we can obtain the second term

A2 = − πiα′

2304
hg2

g1
F 2

f3g2
F f3g1

3 − πiα′

23040
hg1

g1
F 2

f3g1
F f3g1

3 .

The third one is given by

A3 = − πiα′

7680
a2

f2
∂m1hf2g1F 3

g1m1
+

πiα′

23040
∂m1hg1

g1
ag1

2 F
3
g1m1

=
πiα′

7680
∂m1a2

f2
hf2g1F 3

g1m1
− πiα′

23040
hg1

g1
∂m1ag1

2 F
3
g1m1

=
πiα′

7680
hf2g1∂m1a2

f2
F 3

g1m1
+

πiα′

46080
hg1

g1
F g1m1

2 F 3
g1m1

,

and the fourth is

A4 = −g′2o g′c
1

7680
a2

f2
∂m1hf2g2F 3

g2m1

= g′2o g
′
c

1

7680
hf2g2∂m1a2

f2
F 3

g2m1
.

Adding all terms, we obtain

A = g′2o g
′
cπiα

′

(
1

3840
hg1g2∂g2af2

2 F
3
f2g1

− 1

2304
hg2

g1
F 2

f3g2
F f3g1

3

+
1

7680
hf2g1∂m1a2

f2
F 3

g1m1
+

1

7680
hf2g2∂m1a2

f2
F 3

g2m1

)
+

− πiα′

11520
hg1

g1
F 2

f2m1
F f2m1

3

= g′2o g
′
cπiα

′

(
1

3840
hg1g2F g2f2

2 F 3
f2g1

− 1

2304
hg2

g1
F 2

f3g2
F f3g1

3

)

= −g′2o g′c
πiα′

1440
hg1

g2
F g2f2

2 F 3
f2g1

− πiα′

11520
hg1

g1
F 2

f2m1
F f2m1

3 .

In the gauge kmhmn = 0, the relation hg1

g1
= 4Φ is valid [6], and we finally get

A =
πiα′

720
g′2o g

′
c

(
−πiα

′

2
hg1

g2
F g2f2

2 F 3
f2g1

− πiα′

4
ΦF 2

f2m1
F f2m1

3

)
. (4.3)

Comparing this last expression with (2.1), we see that up to a overall factor we have

the right result.
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4.2 One graviton/dilaton and two photinos

From the pure spinor viewpoint, we need the graviton and the photino contribution to the

vertex operators which are respectively given by (4.2) and (3.10). We then obtain

A = g′2o g
′
cπiα

′〈
[
hg1g2

(λγg2θ)− 1

16
∂m1

hg2g1
ηt1t2

(
λγt1θ

) (
θγm1g2t2θ

)

−1

8
∂m1

hh1g2
ηg1t2

(
θγt2γm1h1θ

)
(λγg2θ)

]

×
(
−1

3

(
ξ2γrθ

)
(λγrθ) +

1

60
(λγrθ)

(
θγrstθ

) (
∂sξ

2γtθ
))

×
(
λγmξ3 +

1

4
(λγmγpqθ) ∂pξ

3γqθ

)
〉. (4.4)

In the expression above, we have four terms with five thetas given by

A = 2g′2o g
′
cπiα

′〈 1

24
hmg2

(
λγmγm3f3θ

)
(λγg2θ)

(
λγf2θ

) (
θγf2

ξ2
)
∂m3

ξ3γf3
θ〉 (4.5)

+2πiα′〈 1

120
hmg2

(
λγmξ3

) (
∂m2

ξ2γf2
θ
)
(λγg2θ) (λγrθ)

(
θγrm2f2θ

)
〉

+2πiα′〈 1

96
∂m1

hg1g2

(
λγg1ξ3

) (
ξ2γf2

θ
)
(λγpθ)

(
λγf2θ

)
(θγm1g2pθ)〉

2πiα′〈 1

48
∂m1

hg1g2

(
λγmξ

3
) (
ξ2γf2

θ
)
(λγg2θ)

(
λγf2θ

)
(θγmm1g1θ)〉.

Using now the identity

ξα
2 ξ

β
3 =

1

16
(γa)

αβ (fa) +
1

96
(γabc)

αβ
(
fabc

)
+

1

3840
(γabcde)

αβ
(
fabcde

)
, (4.6)

where

fa... = ξ1γa...ξ2,

we have

ξα
2 ∂m3

ξβ
3 =

1

16
(γa)

αβ (fa
1m3

)
+

1

96
(γabc)

αβ
(
fabc
1m3

)
+

1

3840
(γabcde)

αβ
(
fabcde
1m3

)
.

Therefore the first term gives

A1 = g′2o g
′
c2πiα

′〈 1

24
hg1g2

(
λγg1γm3f3θ

)
(λγg2θ)

(
λγf2θ

)

×
(

1

16
(θγf2

γaγf3
θ)
(
fa
1m3

)
+

1

96
(θγf2

γabcγf3
θ)
(
fabc
1m3

)
+

1

3840
(θγf2

γabcdeγf3
θ)
(
fabcde
1m3

))
〉.

Using now the identities (A.5), (A.6), (A.7) and successive times the identi-

ties (A.1), (A.2) and (A.3), we obtain that only the first term contributes

A1 = g′2o g
′
c2πiα

′

[
− 1

17280
hg1g2

ξ2γg1∂g2ξ3 − 1

4320
hg1g2

ξ2γ
g2∂g1ξ3

]

= −g′2o g′c
2πiα′

3456
hg1g2

ξ2γ
g1∂g2ξ3.
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The next term in (4.5) is

A2 = g′2o g
′
c

2πiα′

120
〈hg1g2

(
λγg1ξ3

) (
∂m2

ξ2γf2
θ
)
(λγg2θ) (λγrθ)

(
θγrm2f2θ

)
〉.

Following the same steps described above, we obtain for the second term

A2 = −g′2o g′c
2πiα′

17280
hg1g2

ξ3γ
g1∂g2ξ2.

For the third term we get

A3 = g′2o g
′
c

2πiα′

96
〈∂m1

hg1g2

(
λγg1ξ3

) (
ξ2γf2

θ
)
(λγpθ)

(
λγf2θ

)
(θγm1g2pθ)〉,

which has null result. In fact, there is no way to contract a kinetic term for the graviton

with two photinos giving a non null result and

A3 = 0.

For the last term we have

A4 = g′2o g
′
c2πiα

′〈 1

48
∂m1

hg1g2

(
λγmξ

3
) (
ξ2γf2

θ
)
(λγg2θ)

(
λγf2θ

)
(θγmm1g1θ)〉,

which is also null for the same reason as before. Finally, adding all terms we obtain

A = −g′2o g′c
πiα′

1440
hg1g2

ξ2γ
g1∂g2ξ3

= g′2o g
′
c

πiα′

720

(
−1

2
hg1g2

ξ2γ
g1∂g2ξ3

)
.

In this case the correlation of one dilaton and of two photinos gives a null result using

the photino’s equation of motion. The amplitude above is proportional to the respective

term in the effective action (2.1), with the same overall factor of the eq. (4.3).

4.3 One gravitino/dilatino, one photon and one photino

In the pure spinor computation, we need the gravitino contribution for the vertex operator.

This is given by

A1
αÃ

1
m = −1

2
hg1

(γg1θ)α

(
ξ̃γmθ

)
+

1

24
hg1

(γg1θ)α (θγmγ
pqθ)

(
∂pξ̃γqθ

)

−1

3
h̃m (ξγrθ) (γrθ)α +

1

12
(ξγrθ) (γrθ)α (θγmγ

pqθ) ∂ph̃q

+
1

16
∂rhs (γtθ)α

(
θγrstθ

)(
ξ̃γmθ

)
+

1

60
h̃m (γrθ)α

(
θγrstθ

)
(∂sξγtθ) .

Then we have

Ã1
αA

1
m +A1

αÃ
1
m = −1

2
(γg1θ)α

[(
hg1

ξ̃ + h̃g1
ξ
)
γmθ

]

+
1

24
(γg1θ)α (θγmγ

pqθ)
[(
hg1

∂pξ̃ + h̃g1
∂pξ
)
γqθ
]
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−1

3

[(
hmξ̃ + h̃mξ

)
γrθ
]
(γrθ)α

+
1

12

[(
∂ph̃qξ + ∂phq ξ̃

)
γrθ
]
(γrθ)α (θγmγ

pqθ)

+
1

16
(γtθ)α

(
θγrstθ

) [(
∂rhsξ̃ + ∂rh̃sξ

)
γmθ

]

+
1

60
(γrθ)α

(
θγrstθ

) [(
h̃m∂sξ + hm∂sξ̃

)
γtθ
]
.

Using the identification

hmξ̃ + h̃mξ = 2ψm,
(
hg1

∂pξ̃ + h̃g1
∂pξ
)

= ∂pψg1

and being careful with the terms with derivatives, we obtain

λÃ1A1
m + λA1Ã1

m = − (λγg1θ) (ψg1
γmθ) +

1

24
(λγg1θ) (θγmγ

pqθ) (∂pψg1
γqθ)

−2

3
(ψmγrθ) (λγrθ) +

1

12
(∂pψqγrθ) (λγrθ) (θγmγ

pqθ) (4.7)

+
1

16
(λγtθ)

(
θγrstθ

)
(∂rψsγmθ) +

1

60
(λγrθ)

(
θγrstθ

)
(∂mψsγtθ) .

Now, we go back to the general expression (3.8) and consider the contribution of the

photon to one of the open strings and the photino to the other. We obtain

A = g′2o g
′
cπiα

′
〈(
λÃAm + λAÃm

) (
λA2

)
(λγmW )

〉
=

= g′2o g
′
cπiα

′〈
[
− (λγg1θ) (ψg1

γmθ) −
2

3
(ψmγrθ) (λγrθ)

+
1

24
(λγg1θ)(θγmγ

m1qθ)(∂m1
ψg1

γqθ)+
1

12
(∂m1

ψg1
γrθ)(λγ

rθ)(θγmγ
m1g1θ)

+
1

16
(λγtθ)

(
θγm1g1tθ

)
(∂m1

ψg1
γmθ) +

1

60
(λγrθ)

(
θγrg1tθ

)
(∂mψg1

γtθ)

]

×
(

1

2
a2

f2

(
λγf2θ

)
− 1

3

(
ξ2γtθ

) (
λγtθ

)
− 1

32
F 2

m2f2
(λγpθ)

(
θγm2f2pθ

))

×
(
λγmξ

3 − 1

4

(
λγmγ

m3f3θ
)
F 3

m3f3
+

1

4
(λγmγ

m3sθ) ∂m3
ξ3γsθ

+
1

48
(λγmγ

rsθ)
(
θγsγ

m3f3θ
)
∂rF

3
m3f3

)
〉.

There will be ten terms with five thetas and, as we have two fermions, we also need

to expand them using the identity (4.6) to obtain a total of thirty terms. The details are

described in appendix D, and the result is given by

A = −g′2o g′c
πiα′

720
(F 2

g1f2
ξ3γ

f2ψg1 + F 3
m3f3

ξ2γ
f3ψm3).

Again, we get that this is proportional to the respective term of the effective action (2.1)

with the right overall factor. Note that, as in all other terms, this amplitude is symmetric

by the exchange of the two open strings. The dilatino-photino-photon correlation can be
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found by this shortcut. We must take the photon contribution from the fixed operator and

the photino from the integrated one. Using the fact that the amplitude is symmetric by

this exchange, we obviously obtain the right result. We then have

A = −g′2o g′c
πiα′

720
(
1

4
F 3

g1f2
ξ2γ

g1f2λ),

which agree with the desired result.

4.4 Kalb-Ramond and two photons

In the type I superstring, the two form does not come from the NS-NS sector, as shown

before. In fact the two form comes from the RR sector and only appears as a field strength.

The RR contribution to the closed string vertex operator comes from

λA1Ã1
m + λÃ1A1

m =

(
−1

3
(ξγnθ) (λγnθ) +

1

60
(λγmθ)α (θγmnpθ) (∂nξγpθ)

)

×
(
−
(
ξ̃γmθ

)
+

1

12
(θγmγ

pqθ)
(
∂pξ̃γqθ

))

+

(
−1

3

(
ξ̃γnθ

)
(λγnθ) +

1

60
(λγmθ)α (θγmnpθ)

(
∂nξ̃γpθ

))

×
(
− (ξγmθ) +

1

12
(θγmγ

pqθ) (∂pξγqθ)

)
.

Making the identification

ξ̃aξβ + ξαξ̃β = 2Fαβ ,

we have only one contribution given by

λA1Ã1
m + λÃ1A1

m = −2

3
(λγnθ) (θγm)α F

αβ (γnθ)β . (4.8)

The other terms have five thetas and do not contribute to the amplitude. We have

then

A = g′2o g
′
cπiα

′〈
(
−2

3
(λγnθ) (θγm)α F

αβ (γnθ)β

)

×
(

1

2
a2

f2

(
λγf2θ

)
− 1

32
F 2

m2f2
(λγpθ)

(
θγm2f2pθ

))

×
(
−1

4

(
λγg1γm3f3θ

)
F 3

m3f3
+

1

48
(λγg1γm3nθ)

(
θγnγ

n3f3θ
)
∂m3

F 3
n3f3

)
〉. (4.9)

We see that there is just one contribution given by

A = g′2o g
′
c

πiα′

12
〈(λγnθ) (θγm)α F

αβ (γnθ)β a
2
f2

(
λγf2θ

)
(λγmγpqθ)F 3

pq〉.

Using now the identity (4.6), the RR field can be expanded

Fαβ = γαβ
a F a +

1

96
γαβ

abcH
abc +

1

3840
γαβ

abcdeF
abcde.
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In the type I superstring the term that survives is the three-form, and we obtain

A = g′2o g
′
c

πiα′

12
〈HabcF 3

pqa
2
f2

(λγmγpqθ) (λγnθ)
(
λγf2θ

)
(θγmγabcγnθ)〉.

In order to solve this term we must use the identities (A.4), (A.6) and successive applications

of the identities (A.1), (A.2) and (A.3). The result is

A =g′2o g
′
c

πiα′

720

(
1

8
a2

f2
F 3

m3f3
Hf2f3m3

)
,

and it is proportional to the expression (2.1), as desired. This term is very important

because it gives origin to a coupling which will cancel the mixed anomaly of SO(32) type

I superstring.

4.5 Kalb-Ramond and two photinos

The RR contribution to the closed string is given by (4.8), and we have the amplitude

A = g′2o g
′
cπiα

′〈
(
−2

3
(λγnθ) (θγm)α F

αβ (γnθ)β

)

×
(
−1

3

(
ξ2γrθ

)
(λγrθ) +

1

60
(λγrθ)

(
θγrstθ

) (
∂sξ

2γtθ
))

×
(
λγmξ3 +

1

4
(λγmγpqθ) ∂pξ

3γqθ

)
〉.

The unique term which has five thetas in the last equation is the following

A = g′2o g
′
c

2πiα′

9
〈
(
λγmξ3

) (
ξ2γtθ

) (
λγtθ

)
(λγnθ) (θγ)mα F

αβ (γnθ)β〉

= g′2o g
′
c

2πiα′

9
Habc〈

(
λγmξ3

) (
ξ2γtθ

) (
λγtθ

)
(λγnθ) (θγmγabcγnθ)〉.

We use here the identity (4.6) two times and the identities of the appendix A in order

to obtain

A = −g′2o g′c
πiα′

34560
Habcξ

2γabcξ3 = g′2o g
′
c

πiα′

720

(
− 1

48
Habcξ

2γabcξ3
)

and this is the right coupling, proportional to eq. (2.1).

5. Conclusions

In this work we have computed explicitly all correlation functions involving one closed and

two open strings in the pure spinor formalism. Comparing with the effective action for

the type I supergravity we came to the conclusion that the pure spinor formalism survives

one more consistency test and most of the couplings of the effective action were derived

here. The mixed string sector of pure spinor has not previously been considered in the

literature and there is a lot of research yet to be done. The problems considered here are
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just the beginning. Higher point amplitudes can be considered and loop corrections to type

I supergravity have not been computed from the pure spinor viewpoint.

As discussed in this paper, the pure spinor formalism gives the right coupling between

the Kalb-Ramond field and other gauge fields, a result of particular importance in the

mixed anomaly cancellation. At tree level, diagrams in which a two form is exchanged

between two gauge fields on one side and four on the other side have to be considered for

this cancellation. Therefore, a first step may be the computation of the tree-level five point

amplitudes involving a Kalb-Ramond field and four gauge bosons. This last idea is left

here for future investigations.
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A. Some important identities

During the computations made in this paper, we use extensively the following identities [7]:

〈(λγaθ)
(
λγbθ

)
(λγcθ) (θγdefθ)〉 =

1

120
δabc
def , (A.1)

〈
(
λγabcθ

)
(λγdθ) (λγeθ) (θγfghθ)〉 =

1

70
δ
[a
[dηe][fδ

b
gδ

c]
h], (A.2)

〈
(
λγabcdeθ

)
(λγfθ) (λγgθ) (θγhijθ)〉 = − 1

42
δabcde
fghij −

1

5040
εabcde
fghij . (A.3)

Any other term can be reduced to these above using the identities

γaγbc = γabc + ηabγc − ηacγb, (A.4)

γaγbγc = ηbcγa − ηacγb + ηabγc + γabc, (A.5)

γaγabcγd = ηadηceγb − ηacηdeγb − ηadηbeγc + ηabηdeγc

+ηacηbeγd − ηabηceγd + ηdeγabc − ηceγabd + ηbeγacd

−ηaeγbcd + ηadγbce − ηacγbde + ηabγcde + γabcde (A.6)

and

γaγabcdeγf = ηafηegγbcd − ηaeηfgγbcd − ηafηdgγbce + ηadηfgγbce

+ηaeηdgγbcf − ηadηegγbcf + ηafηcgγbde − ηacηfgγbde

−ηaeηcgγbdf + ηacηegγbdf + ηadηcgγbef − ηacηdgγbef

−ηafηbgγcde + ηabηfgγcde + ηaeηbgγcdf − ηabηegγcdf

−ηadηbgγcef + ηabηdgγcef + ηacηbgγdef − ηabηcgγdef

+ηfgγabcde − ηegγabcdf + ηdgγabcef − ηcgγabdef

+ηbgγacdef − ηagγbcdef + ηafγbcdeg − ηaeγbcdfg

+ηadγbcefg − ηacγbdefg + ηabγcdefg + γabcdefg, (A.7)

– 16 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
5

B. Gauge invariance

The expression (3.8) must be invariant under all gauge transformations. The first is given by

δ
(
λA2

)
= QΛ

and the variation of the first term in (3.8) is

δS1

πiα′
=
〈
A1

m

(
λÃ1

)
(QΛ)

(
λγmW 3

)〉

=
〈
QA1

m

(
λÃ1

)
Λ
(
λγmW 3

)〉
+
〈
A1

mQ
(
λÃ1

)
Λ
(
λγmW 3

)〉
−
〈
A1

m

(
λÃ1

)
ΛQ
(
λγmW 3

)〉

=
〈[
λγmW+∂m

(
λA1

)](
λÃ1

)
Λ
(
λγmW 3

)〉
− 1

4

〈
A1

m

(
λÃ1

)
Λ
(
(λγm)α(λγrs)α F 3

rs

)〉

=
〈[
λγmW+∂m

(
λA1

)](
λÃ1

)
Λ
(
λγmW 3

)〉
− 1

4

〈
A1

m

(
λÃ1

)
Λ
(
(λγm)α(λγrs)α F 3

rs

)〉

=
〈
∂m

(
λA1

) (
λÃ1

)
Λ
(
λγmW 3

)〉
= k1

m

〈(
λA1

) (
λÃ1

)
Λ
(
λγmW 3

)〉
.

In the above expression, we have used the pure spinor condition (3.1) and the Fierz identity

(γm)(αβ (γm)ρ)σ = 0.

The variation of the second term is

δS2

πiα′
=
〈
Ã1

m

(
λA1

)
(QΛ)

(
λγmW 3

)〉

=
〈
QÃ1

m

(
λA1

)
Λ
(
λγmW 3

)〉
+
〈
Ã1

mQ
(
λA1

)
Λ
(
λγmW 3

)〉
−
〈
Ã1

m

(
λA1

)
ΛQ
(
λγmW 3

)〉

=
〈[
λγmW

1 + ∂m

(
λÃ1

)] (
λA1

)
Λ
(
λγmW 3

)〉
− 1

4

〈
Ã1

m

(
λA1

)
Λ
(
λγmλγrsF 3

rs

)〉

=
〈[
λγmW

1 + ∂m

(
λÃ1

)] (
λA1

)
Λ
(
λγmW 3

)〉
− 1

4

〈
Ã1

m

(
λA1

)
Λ
(
λγmλγrsF 3

rs

)〉

=
〈
∂m

(
λÃ1

) (
λA1

)
Λ
(
λγmW 3

)〉
= k1

m

〈(
λÃ1

) (
λA1

)
Λ
(
λγmW 3

)〉

= −k1
m

〈(
λA1

) (
λÃ1

)
Λ
(
λγmW 3

)〉

again we have used the pure spinor condition and the Fierz identity. Adding the results

we obtain

δS = δS1 + δS2 = 0.

The other gauge transformation is given by

δ
(
λA1

)
= QΛ, δA1

m = ∂mΛ

and we obtain

δS1

πiα′
=
〈
∂mΛ

(
λÃ1

) (
λA2

) (
λγmW 3

)〉
= k1

m

〈
Λ
(
λÃ1

) (
λA2

) (
λγmW 3

)〉
.

For the second term

δS2

πiα′
=
〈
Ã1

m (QΛ)
(
λA2

) (
λγmW 3

)〉

=−
〈
QÃ1

mΛ
(
λA2

)(
λγmW 3

)〉
+
〈
Ã1

mΛQ
(
λA2

)(
λγmW 3

)〉
−
〈
Ã1

mΛ
(
λA2

)
Q
(
λγmW 3

)〉
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= −
〈[
λγmW

1 + ∂m

(
λÃ1

)]
Λ
(
λA2

) (
λγmW 3

)〉
− 1

4

〈
Ã1

mΛ
(
λA2

) (
λγmλγrsF 3

rs

)〉

= −
〈[
λγmW

1 + ∂m

(
λÃ1

)]
Λ
(
λA2

) (
λγmW 3

)〉
− 1

4

〈
Ã1

mΛ
(
λA2

) (
λγmλγrsF 3

rs

)〉

= −
〈
∂m

(
λÃ1

)
Λ
(
λA2

) (
λγmW 3

)〉
= −k1

m

〈(
λÃ1

)
Λ
(
λA2

) (
λγmW 3

)〉

and finally

δS = δS1 + δS2 = 0.

Using identical arguments as above we obtain the invariance under

δλÃ = QΛ.

Therefore, as expected, the final expression is in fact gauge invariant.

C. The one graviton two photons correlation function in Ramond-Neveu-

Schwarz formalism

In the Ramond-Neveu-Schwarz case two of the vertex operators must be in the picture −1

and one in the picture 0. Choosing the closed string in the picture 0, we obtain

V 0
c =

−2i

α′
g′c : cc̃hµν

(
i∂Xµ +

α′
2
k1

σψ
σψµ

)(
i∂̄Xν +

α′
2
k1

ρψ̄
ρψ̄ν

)
eik

1·x(z) : .

In this section, we follow the notation used in [6].The fixed open string operator in the

-1 picture is given by

V −1
o = ig′o : a2αψ

αce−φeik2·x(y2) :,

and the integrated one is given by

V −1
o = ig′o

∫
dy3 : a3βψ

βe−φeik3·x(y3) : .

The expression for the amplitude is given by [6]

A = 2i
g′c
α′g

′2
o e

−λ

∫ +∞

−∞

dy3〈: cc̃hµν

(
i∂Xµ +

α′
2
k1

σψ
σψµ

)(
i∂̄Xν +

α′
2
k1

ρψ̄
ρψ̄ν

)
eik

1·x(z) :

: a2αψ
αce−φeik2·x(y2) :: a3βψ

βe−φeik3·x(y3) :〉. (C.1)

The OPEs between the Xµ fields will be needed for all cases and it is given by

: X µ (z1)X
ν (z2) := Xµ (z1)X

ν (z2) −
α′
2
ηµν

[
ln |z1 − z2|2 + ln |z1 − z̄2|2

]
. (C.2)

From the above expression all the related OPEs can be obtained

: ∂X µ (z1) ∂̄X
ν (z2) := ∂Xµ (z1) ∂̄X

ν (z2) −
α′
2
ηµν 1

(z̄2 − z1)
2 ,

: ∂X µ (z1)X
ν (y) := ∂Xµ (z1)X

ν (y) + α′ηµν 1

y − z1
,

: ∂̄X µ (z1)X
ν (y) := ∂Xµ (z1)X

ν (z2) + α′ηµν 1

y − z̄1
.
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We also need of the OPE for the fields

〈e−φ (z1) e
−φ(z2)〉 = z−1

12 ,

〈ψµ (z1)ψ
ν(z2)〉 = ηµνz−1

12 .

After making all the possible contractions in the expression (C.1), we obtain

A = 2i
g′c
α′ g

′2
o e

−λ

∫ +∞

−∞

dy3〈: cc̃eik
1·x(z) :: ce−φeik2·x(y2) :: eik3·x(y3) :〉 1

y2 − y3

×
{
− hµνa2αa3β

ηαβ

(y2 − y3)

[
+

iα′
y2 − z

kµ
2 +

ikµ
3α′

y3 − z

] [
iα′

y2 − z
kν
2 +

iα′
y3 − z

kν
3

]
(C.3)

+
iα′

2
hµν

[
iα′

y2 − z
kν
2 +

iα′
y3 − z

kν
3

] [
k1ση

µαησβa2αa3β

(z − y2) (z − y3)
− k1ση

µβησαa2αa3β

(z − y2) (z − y3)

]

+
iα′

2
hµν

[
+

iα′
y2 − z

kµ
2 +

ikµ
3α′

y3 − z

] [
k1ρη

ναηρβa2αa3β

(z̄ − y2) (z̄ − y3)
− k1ρη

νβηραa2αa3β

(z̄ − y2) (z̄ − y3)

]}
.

The ghost contribution to the amplitude is given by

〈cc̃(z)c(z2)〉 = Cg
D2

|y2 − z|2 (z − z) .

In the last equation, Cg
D2

is a constant coming from functional determinants. The contri-

bution from the exponentials is given by
〈
: eik·x(z) :: eik·x(y2) :: eik·x(y3) :

〉

= iCX
D2

(2π)dδ(Σk) |z − z|α′k2

1
/2 |y2 − y3|2α′k2·k3 |y2 − z|2α′k1·k2 |y3 − z|2α′k1·k3

again, CX
D2

is a constant coming from functional determinants. Using momentum conser-

vation we obtain

k2
1 = k1 · k2 = k1 · k3 = k3 · k2 = 0,

then 〈
: eik·x(z) :: eik·x(y2) :: eik·x(y3) :

〉
= iCX

D2
(2π)dδ(Σk),

and we obtain for (C.3)

A = −2
g′c
α′g

′2
o (2π)dδ(Σk)e−λCg

D2
CX

D2

∫ +∞

−∞

dy3
1

y2 − y3
|y2 − z|2 (z − z) (2π)dδ(Σk)

×
{
− hµνa2αa3β

ηαβ

(y2 − y3)

[
+

iα′
y2 − z

kµ
2 +

ikµ
3α′

y3 − z

] [
iα′

y2 − z
kν
2 +

iα′
y3 − z

kν
3

]

+
iα′

2
hµν

[
iα′

y2 − z
kν
2 +

iα′
y3 − z

kν
3

] [
k1ση

µαησβa2αa3β

(z − y2) (z − y3)
− k1ση

µβησαa2αa3β

(z − y2) (z − y3)

]

+
iα′

2
hµν

[
+

iα′
y2 − z

kµ
2 +

ikµ
3α′

y3 − z

] [
k1ρη

ναηρβa2αa3β

(z̄ − y2) (z̄ − y3)
− k1ρη

νβηραa2αa3β

(z̄ − y2) (z̄ − y3)

]}
.

The contribution of the functional determinants can be found in [6] and it is given by

e−λCg
D2
CX

D2
=

1

α′g2
o

, g′c =
2gc

α′ ; g′o =
go√
2α′

.
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As in the pure spinor case, we fix

y2 = 0;Re(z) = 0; Im(z) = a

to obtain

A =
−i
2α′

g′c(2π)dδd(Σk)a

∫ +∞

−∞

dy3
1

|y3 + ia|2
×{[a3 · k12hµν (aµ

2k
ν
23 + aν

2k
µ
23) − a2 · k13hµν (aµ

3k
ν
23 + aν

3k
µ
23) + 2hµνk

ν
23k

µ
23a2 · a3]} .

From the above expression, we can already see that the antisymmetric part of hµν

does not contribute for this amplitude. In fact in the type I superstring, the Kalb-Ramond

contribution comes from the RR sector and not from NS-NS. Finally, integrating we obtain

A =
πi

2α′gc(2π)dδd(Σk) [a3 · k12hµνa
µ
2k

ν
23 − a2 · k13hµνa

µ
3k

ν
23 + hµνk

ν
23k

µ
23a2 · a3] .

The last expression can be written in the position space

A =
i

4α′gch
µ
νFµαF

να. (C.4)

This amplitude originates a term in the effective action that is proportional to (2.1)

and to the pure spino result (4.3),as desired. Obviously it has all the desired properties as

gauge invariance and symmetry in the exchange of the two photons.

D. One gravitino one photon one photino

As said in the text, the final expression is given by

A = −πiα
′

8
〈
[

(λγg1θ) (ψg1
γmθ) +

2

3
(ψmγrθ) (λγrθ)

]
a2

f2

(
λγf2θ

)
(λγmγ

m3sθ) ∂m3
ξ3γsθ〉

−πiα
′

12
〈
[

(λγg1θ) (ψg1
γmθ) +

2

3
(ψmγrθ) (λγrθ)

] (
ξ2γtθ

) (
λγtθ

)(
λγmγ

m3f3θ
)
F 3

m3f3
〉

+
πiα′

32
〈
[

(λγg1θ) (ψg1
γmθ) +

2

3
(ψmγrθ) (λγrθ)

]
F 2

m2f2
(λγpθ)

(
θγm2f2pθ

) (
λγmξ

3
)
〉

+πiα′〈
[

1

48
(λγg1θ) (θγmγ

m1qθ) (∂m1
ψg1

γqθ) a
2
f2

(
λγf2θ

)(
λγmξ

3
)

+
1

24
(∂m1

ψg1
γrθ) (λγrθ) (θγmγ

m1g1θ) a2
f2

(
λγf2θ

)(
λγmξ

3
)

+
1

32
(λγtθ)

(
θγm1g1tθ

)
(∂m1

ψg1
γmθ)a

2
f2

(
λγf2θ

) (
λγmξ

3
)

+
1

120
(λγrθ)

(
θγrg1tθ

)
(∂mψg1

γtθ) a
2
f2

(
λγf2θ

)(
λγmξ

3
) ]

〉

the terms with five θ’s are given by

A = +
πiα′

8
a2

f2
〈(λγrγ

m3sθ) (λγg1θ)
(
λγf2θ

)
(θγrψg1

) ∂m3
ξ3γsθ〉

+
πiα′

12
a2

f2
〈(λγg1γm3sθ) (λγrθ)

(
λγf2θ

)
(θγrψg1

) ∂m3
ξ3γsθ〉
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+
πiα′

12
F 3

m3f3
〈
(
λγrγm3f3θ

)
(λγg1θ)

(
λγtθ

)
(θγrψg1

)
(
ξ2γtθ

)
〉

+
πiα′

18
F 3

m3f3
〈
(
λγg1γm3f3θ

)
(λγrθ)

(
λγtθ

)
(θγrψg1

)
(
ξ2γtθ

)
〉

+
πiα′

32
F 2

m2f2
〈
(
λγrξ

3
)
(ψg1

γrθ) (λγg1θ) (λγpθ)
(
θγm2f2pθ

)
〉

+
πiα′

48
F 2

m2f2
〈
(
λγg1ξ3

)
(ψg1

γrθ) (λγrθ) (λγpθ)
(
θγm2f2pθ

)
〉

+
πiα′

48
a2

f2
〈
(
λγpξ

3
)
(∂m1

ψg1
γqθ) (λγg1θ)

(
λγf2θ

)
(θγpγm1qθ)〉

+
πiα′

24
a2

f2
〈
(
λγsξ

3
)
(∂m1

ψg1
γrθ) (λγrθ)

(
λγf2θ

)
(θγsγm1g1θ)〉

+
πiα′

32
a2

f2
〈
(
λγsξ

3
)
(∂m1

ψg1
γsθ) (λγtθ)

(
λγf2θ

) (
θγm1g1tθ

)
〉

+
πiα′

120
a2

f2
〈
(
λγm1ξ3

)
(∂m1

ψg1
γtθ) (λγrθ)

(
λγf2θ

) (
θγrg1tθ

)
〉

all the terms above are quite similar to the one graviton and two photinos computation.

Following the same steps and using the fact that the gravitino is gamma traceless exten-

sively we obtain

A1 = πiα′

(
1

3840
af2

ψg1
γf2∂g1ξ3 −

1

7680
af2

ψg1
γf2g1m3∂m3

ξ3

)
.

Using now the identity (A.5), we obtain

A1 = πiα′

(
1

3840
af2

ψg1
γf2∂g1ξ3 +

1

7680
af2

ψg1
γf2∂g1ξ3

)

=
3πiα′

7680
af2

ψg1
γf2∂g1ξ3.

Using the same argument for the other ten terms, we obtain

A2 =
πiα′

2160
af2

ψg1
γf2∂g1ξ3,

A3 = πiα′

(
− 1

5760
F 3

m3f3
ψm3γf3ξ2 +

1

5760
F 3

m3f3
ψf3γm3ξ2 +

1

5760
F 3

m3f3
ψg1

γf3g1m3ξ2

)

= − πiα′

1440
F 3

m3f3
ψm3γf3ξ2,

A4 = − πiα′

2880
F 3

m3f3
ψm3γf3ξ2 +

πiα′

2880
F 3

m3f3
ψf3γm3ξ2

= − πiα′

1440
F 3

m3f3
ψm3γf3ξ2,

A5 = πiα′

(
1

5760
F 2

m2f2
ξ3γf2ψm2 − 1

5760
F 2

m2f2
ξ3γm2ψf2 − 1

46080
F 2

m2f2
ξ3γf2g1m2ψg1

)

= πiα′

(
1

2880
F 2

m2f2
ξ3γf2ψm2 − 1

23040
F 2

m2f2
ξ3γf2ψm2

)
=

7πiα′

23040
F 2

m2f2
ξ3γf2ψm2 ,
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A6 = πiα′

(
1

17280
F 2

m2f2
ξ3γf2ψm2 − 1

17280
F 2

m2f2
ξ3γm2ψf2 +

1

17280
F 2

m2f2
ξ3γf2g1m2ψg1

)

= πiα′

(
1

8640
F 2

m2f2
ξ3γf2ψm2 +

1

8640
F 2

m2f2
ξ3γf2ψm2

)
=
πiα′

4320
F 2

m2f2
ξ3γf2ψm2 ,

A7 = πiα′

(
1

34560
a2

m1
ξ3γg1∂m1ψg1

− 1

138240
af2

2 ξ
3γf2g1m1

∂m1ψg1

)

= 0,

A8 = − πiα′

17280
a2

f2
ξ3γf2g1m1∂m1

ψg1
= 0,

A9 = − πiα′

46080
a2

f2
ξ3γf2g1m1∂m1

ψg1
= 0

and

A10 = πiα′

(
1

1440
a2

f2
ξ3γf2g1m1∂m1

ψg1

)
= 0.

We can note that the last four terms give null results because, as in the graviton case,

there is no way to contract a kinetic term of the gravitino with a photon and a photino

that gives a non null result. Adding all results, we obtain

A = πiα′

(
− 3

7680
F 2

g1f2
ψg1

γf2ξ3 −
1

2160
F 2

g1f2
ψg1

γf2ξ3

− 1

1440
F 3

m3f3
ψm3γf3ξ2 −

1

1440
F 3

m3f3
ψm3γf3ξ2

− 7

23040
F 2

m2f2
ψm2γf2ξ3 − 1

4320
F 2

m2f2
ψm2γf2ξ3

)

= −πiα
′

720
(F 2

g1f2
ψg1γf2ξ3 + F 3

m3f3
ψm3γf3ξ2)
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